Charged lipid vesicles: effects of salts on bending rigidity, stability, and size.
نویسندگان
چکیده
The swelling behavior of charged phospholipids in pure water is completely different from that of neutral or isoelectric phospholipids. It was therefore suggested in the past that, instead of multilamellar phases, vesicles represent the stable structures of charged lipids in excess water. In this article, we show that this might indeed be the case for dioleoylphosphatidylglycerol and even for dioleoylphosphatidylcholine in certain salts. The size of the vesicles formed by these lipids depends on the phospholipid concentration in a way that has been predicted in the literature for vesicles of which the curvature energy is compensated for by translational entropy and a renormalization of the bending moduli (entropic stabilization). Self-consistent field calculations on charged bilayers show that the mean bending modulus kc and the Gaussian bending modulus k have opposite sign and /k/>kc, especially at low ionic strength. This has the implication that the energy needed to curve the bilayer into a closed vesicle Eves=4pi(2kc+k) is much less than one would expect based on the value of kc alone. As a result, Eves can relatively easily be entropically compensated. The radii of vesicles that are stabilized by entropy are expected to depend on the membrane persistence length and thus on kc. Experiments in which the vesicle size is studied as a function of the salt and the salt concentration correlate well with self-consistent field predictions of kc as a function of ionic strength.
منابع مشابه
Experimental evidence of the electrostatic contribution to membrane bending rigidity
– We have investigated the thermal fluctuations of giant unilamellar dimyristoylphosphatidlycholine vesicles in the presence of both non-ionic and ionic surfactants (peptides) with identical apolar chains. Using vesicle fluctuation analysis, the effects of ionic and non-ionic surfactants upon membrane bending rigidity in the case of no added salt have been determined and the electrostatic contr...
متن کاملCationic liposome-microtubule complexes: pathways to the formation of two-state lipid-protein nanotubes with open or closed ends.
Intermolecular interactions between charged membranes and biological polyelectrolytes, tuned by physical parameters, which include the membrane charge density and bending rigidity, the membrane spontaneous curvature, the biopolymer curvature, and the overall charge of the complex, lead to distinct structures and morphologies. The self-assembly of cationic liposome-microtubule (MT) complexes was...
متن کاملThe physicochemical and organoleptic evaluation of the nano/micro encapsulation of Omega-3 fatty acids in lipid vesicular systems
Objective(s): Omega-3 fatty acids play a key role in maintaining human health. The present study aimed to reduce the fishy smell and taste of omega-3 fatty acids through the encapsulation of lipid vesicles. Materials and Methods: Different non-ionic surfactants from the sorbitan ester family and egg lecithin with cholesterol were utilized to form micro-niosomal and liposomal formulations ...
متن کاملEffects of charge and its fluctuation on membrane undulation and stability
– We study the electrostatic effects on the undulation of a flexible membrane with non-vanishing excess charges and charge fluctuation. It is shown that the membrane becomes unstable to a long-wavelength undulation due to Coulomb repulsion between excess charges on the membrane. This instability is suppressed both by charge fluctuation which induces an effective attraction and by free ions in s...
متن کاملCationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes.
The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2004